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1 Summary

The technical report “Multispectral SAR Imaging for Material Identification,” ([1]) presents
a novel method for directly recovering a time-domain reflection coefficient from the incident
and scattered waves. The derivation begins with an integral equation for the reflection
coefficient, and proceeds to use a chirp waveform excitation and matched filter operation to
find the reflection coefficient to within a scale factor. The basic derivation is then re-cast in
discrete form in a linear algebra context, followed by a series of numerical examples.

This report presents an alternative derivation of the solution given in [1] in terms of the
general problem of determining the impulse response of a linear, time-invariant system. The
integral equation with chirp excitation and matched filter operator are shown to lead to
a Fourier integral representation of the Dirac delta function, which immediately yields the
scaling relation shown in [1]. Important practical ramifications of this approach, including the
noise properties of the matched filter and the effects of finite-duration chirps, are explored.
The continuous time integral equation is then discretized in a straightforward manner, and
a magic number is presented that allows for the exact recovery of an arbitrary impulse
response. This formulation is followed by a brief set of numerical examples that demonstrate
the approach. The theoretical portion of the report is concluded with a discussion of antenna
effects on chirp waveforms and the use of real (in contrast to complex) chirp waveforms to
recover the impulse response.

Time-domain measurements of chirp waveforms were performed as a means to exper-
imentally-validate the analytic approach. We found that the radiated real chirp and as-
sociated response were insufficient for use in the complex-chirp based approach developed
previously. Comparison of Fourier-transformed data to direct frequency domain measure-
ments further reveals that the chirp measurements suffer from noise that is mitigated in
heterodyne systems. In support of program goals, we also measured (in the frequency do-
main using standard network analyzer techniques) plane wave reflection and transmission
for a set of materials of military interest, including cement, drywall, plywood, topsoil, sand,
and shingles. Extraction of dielectric constants from these measurements show that many
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construction materials have very similar dielectric properties, and that wide-band, low-noise
measurements are essential for unique material identification.

2 Chirp Waveform Analysis

2.1 Formulation

Consider a scalar plane wave normally incident upon a material half space, where the time
dependent reflection coefficient R(t) defines the ratio of the incident and scattered fields at
the interface boundary. The integral equation

)= [ Re-w @i (1)

relates the incident field 4(t) and the scattered (echo) field 9°(t) to the unknown reflectivity
function R(t). More generally, this expression gives the output of a linear, time-invariant
system with impulse response R(t). To explicitly see this characteristic of (1), we can perform
a change of variables and re-write the convolution in the more familiar form (explicitly, this
is a Fredholm integral equation of the first kind):

y(t) = /0 * h(s) ot — s)ds = z(t) * h(2), @)

where 9¢(t) — y(t), ¥(t) — z(t), and R(t) — h(t). We will use this notation throughout as
it captures the LTT systems flavor of (1) and separates the solution from any specific physical
geometry (such as plane wave reflection from a dielectric slab)?.

The solution of (2) for an unknown h(t) given the system input z(t) and output y(¢) is
typically found by transforming the convolution into the frequency domain, where it becomes

multiplication:
Y(f)=H()X() (3)
where z()(y(t), h(t)) and X (f)(Y (f), H(f)) are related by the Fourier transform pair
) = [ F(pemras
P = [ f@e = ar @
(5)

The inverse Fourier transform of the ratio Y (f)/X(f) then yields h(t).

1As discussed in our original proposal, knowing R(t) is not in general sufficient to determine material
constitutive parameters. In this report, we are principally concerned with implementing algorithms to
determine R(t), and thus we prefer the more universal treatment of finding a system impulse response h(t).
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2.2 A Closed-Form Solution of Equation (2)

Avoiding the frequency domain altogether, [1] presents a novel solution to the integral equa-
tion (2) by first imposing a chirp pulse excitation z.,(t) = e?™f’ ¢ i1 and then applying the
matched filter defined as

A = [ " -t)y(wdu ©)

The central result is a simple scaling relation between the matched filter response and the
impulse response: : 7

h(t) = YA(R).- (7)

A straightforward derivation of this result begins by noting the additive character of the
chirp: .
zH(t1 +12) = x’y(tl)xv(h)ez%wm- (8)

Using the chirp waveform excitation (z(t) = z.(t)) and operating on the integral in (2) with -
the matched filter yields h(t):

A(t). - /°° 2 (u— 1) {/Oooh(s):z:(u—-s)ds} du

—00

= /Ooo h(s) {/_O;m*(u—t)z(u— s)du} ds
= [T {39 [ =iy} ds
= /Ooo {:v;(—t) ZH(—8)(y(t - s))} ds

9

M. g<t<oo
0; otherwise )

2.3 Matched Filter: Unbiased and Minimum Variance Estimator

When combined with the chirp kernel, the matched filter (6) yields the impulse response
h(t) to within a scalar factor. Of critical importance to the fidelity of h(t) is the robustness
of the matched filter in the presence of noise. We consider in particular the case of noise
added to the received signal y(t) — y(t) + n(t) (e.g. noise added by receiver electronics),
where n(t) is additive white Gaussian noise (AWGN)? with zero mean and autocorrelation
function ¢(7) = N 6(7).

The introduction of noise means theAdeterministic estimator h(t) (or equivalently A(t))
becomes a stochastic estimator £(t) = h(t), where we use the traditional hat to denote a
statistical estimator of a deterministic function. The estimator

)= [ W), +n() s~ t)ds (10)

2assumed wide-sense stationary (WSS).
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is a random process due to the presence of n(t). We wish to determine if the estimator £
is unbiased and minimum variance. An unbiased estimator has the property that E[£(t)] =
h(t); assuming the integrand is uniformly continuous, we can exchange the linear operators
E[-] and [, and obtain

BlE) = v [ (nlt+uo) + B a3t - o)t
= 7/_0:0 yy(t + uo)xi’;(t —s)dt
= h(s), (11)

where we have used the zero mean nature of the Gaussian process n(t) and the fact that the
expectation of a deterministic function is that deterministic function. Since E[¢(t)] = h(t),
the estimator £(t) is an unbiased estimator.

For the case of white noise, the estimator is also minimum variance. We shall not prove

this fact, which is moderately lengthy. Instead we refer the reader to [2]. The proof in
that text for general matched filter architectures applies directly to our scenario. Thus we
can conclude that £(t) is a pointwise minimum variance, unbiased estimator for the impulse
response h(t), and hence asymptotically mean square optimal.

The remaining question is the nature of the estimator noise with respect to the input
noise. First, we immediately know that £ is a wide sense stationary Gaussian random
process, since £ is a linear combination of samples of the wide sense stationary Gaussian
random process n. We wish to determine the autocovariance function D(7) of ¢ with respect
to the autocorrelation function of the noise. Note that we deal with the autocovariance
function for £ because £ is not a zero mean random process. In essence, we are asking how
the variance of £ relates to the variance of n. Then

D(r) = E[{&(s) — B ()} {&(s +7) — E[¢(s +7)]}]
= 7’E [/_o:o (y4(q + uo) + n(q)) z3(q — s — 7)dg
[ ‘:(y;(t +ub) + nt))a, (t - s)dt]
7 [ wla+uo)wilg—s—r)dg [ "¢+t (t - sha
= N /_ °; 24(z — 7 — 8)z,(z — 5)da, (12)

where we have used the fact that E[n(q) n(t)] = 6(¢ —t) to eliminate one integration.
The expectation is valid for any s € (—o00,00) due to the wide sense stationarity of the
noise, so we choose s=0 yielding the following:

D(t) =4*N /_o:o z3 (v — 1)z, (v) dv. ‘. (13)

This gives us the output covariance matrix as a function of the input chirp signal parameters
and the noise power N. Note that £ is not white, due to the power density spectral shaping
induced by the matched filter kernel z(¢). Thus £ is a WSS Gaussian random process, with
a colored power spectral density.



At first glance one would expect to see the reflection function in the expression for D(7).
However, the noise is added to y(t) at the output of the system. The noise is not modulated
by the reflection function. Hence the noise behavior of the estimator is not influenced by the
reflection function, and we have shown the estimator £ is minimum variance and unbiased
in the presence of additive white gaussian noise acting on the received signal y(t). We have
also determined the output covariance function D() of the stochastic estimator £(t) for the
system parameters v and the noise power N.

2.4 Finite Duration Chirps

The exact solution (9) to the integral equation requires integrating the chirp product over
the entire range t € (—00,00). In practice, we cannot operate for an infinite time duration
and we are forced to confront the effects of placing a time window of length T" around the
infinite chirp.

To simplify the mathematics while still providing important insight into finite-duration
chirps, consider a delta function impulse response: hs(t) = §(t) and the associated matched
filter response

45ty = [ ® r(u—t) { / * ha(s) z(u — s)ds} du. (14)

—00

The windowed chirp — defined as ! (t) = z,(t), =T/2 < t < T/2; 0, otherwise — is used as
the source z(t) in (14):

t+T/2

As(t) = /t—T/Z z3(u—1) {/Ooo 0(8) z4(u — s)ds} du

HT/2
= /t_T/2 -, (u — t)z, (v)du

t+T/2 .

—_ / CL‘; (—t) ez21r7ut du
t—T/2
. ei2w7ut

= m'y(_t)

i Tt
p— sin(myT't)

, sin(myT't)

= () e (15)
In the limit as T — oo, the above result reduces to the expected delta function® scaled
by «; for finite T, the result is a smeared version of the delta function (scaled by the
chirp waveform), represented by the sinc function. This solution agrees with the general
observation that finite time windows perform a smearing on a response to a linear, time-
invariant system.

Slimg o0 ST = 7f(myt) = 4



2.5 Numerical Implementation
2.5.1 Formulation

The numerical -evaluation of the matched filter response (9) is most easily accomplished by
reconsidering the integral equation (2) in its discrete form. Using this approach, we assume
that the finite-duration chirp signal is not a windowed version of a chirp; rather, it is one
period of a periodically-replicated function. As such, we will show that for particular choices
of chirp parameter and period duration, we can exactly recover the impulse response via the
chirp excitation/matched filter operation.

Consider uniformly discretized time samples such that ¢, = nAt,n =...,-2,-1,0,1,2,....
The discrete-time form of the system response becomes

Z h(t,)z(t, — t.)AL. (16)
The matched filter takes the form
Altn) =D z*(ts — ta)y(ts). (17)
ts

As before in the continuous case, we have

Alt,) = th){Zx — ta) T, (ts )}AtAt

= St a3 (tlat-t) Do arar (19
Let ¢, = {[—N : N]At} and recall that
N jas _ sin[(2N + 1)a/2] 1
sgNe B sin(a/2) = (@N+1) [&"t’ +0 (2N + 1)] ’ 19)

where 6, is the Kronecker delta function. Then
~ D0 h(t) {25(~tn)ay(—t) (2N + Die, } ALAL
tr

{ h(t,)(2N + 1)AtAt if t, €ty (20)
0 otherwise

An important contrast between this result and the results presented in [1] is the fact that
we have not specified the support of h(t). For practical purposes, we assume that h(t) = 0
for t outside the range [-NAt : NAt] since in actuality we can never know the support of
h(t) and must choose chirps long enough to at least capture h(z).




The Magic Number

Re-examining the steps that lead to (20), let us reconsider the original series (18). We
assume that all discrete time values t,t,, and t, are discretized with equal At so t, — ¢, =

mAt, wherem = ...,—2,-1,0,1,2,.... Then we can write the inner nested sum in (18) as
i i2mymAt-sAt i 2 At?
S — e‘l Ty, S, — ez TYms . (21)
s=—N s=—N .

Suppose that we choose At to be the magic number (Nv)_%, then

S = Z ei27r%s
s=—N
2N + 1, m=0
{ 0; otherwise (22)

Numerically, the magic number provides for complete cancellation of the set of vectors e*®
in the complex plane by setting o equal to an integer number of intervals in the unit circle.
This property is related to the Nyquist sampling rate, where there are exactly two samples
per 27 radians. We can see this explicitly by considering the time-dependent frequency of
the chirp, f(t) = fo + %t. The highest frequency of the signal occurs when ¢ is a maximum:
t = NAt. Setting fo = 0 (without loss of generality, as we can always mix down the harmonic
component of the signal) and using the magic number for At we find the maximum frequency

18
_Inar=t Lt A= b
fma.x - 2NAt— 2At2At— 2At (23)

Recalling the Nyquist rate gives the highest frequency that can be sampled with a period of
At as foq = i—t, we see that f... is identically the Nyquist frequency when At is the magic
number. ,

Our constraint that fo = 0 is related to the Zak transform analysis given in a subsequent
Progress Report [3] by the authors of [1]. Leaving the detailed derivation to [3], the Zak space
representation of the chirp begins with a discretized waveform of duration T" sampled at N
uniform points, where the Zak space is defined by dimension L x K, with measures N = LK
and M = K/L. Discretizing the chirp yields parameters a = 717;—2 (discrete chirp rate) and
b= fo% (discrete carrier frequency). The authors show that a chirp can be represented as a
line (or set of lines) in Zak space provided that z(N) =1, aM € Z, and aM? and 2bM are
either both odd or both even integers. These parameter constraints result from requiring
modulo N periodization of the sampled chirp; as noted above, the magic number arises from
a similar periodization (i.e. perfect cancellation of terms over the series).

To see the relation between the magic number derivation and [3]’s result for the Zak
space condition, consider the impact of the parameter constraints on the Nyquist frequency.

The quantity ,
' T? K T
aM =955 T =7T%

Ea . I S ’YTAtsamp €7 ‘ (24)



must be greater than or equal to 1 since it is a positive integer. Conversely, the Nyquist
frequency of the chirp (following (23) with fo 7 0) gives

1

Aty = ———.
e = DT 100,

(25)
In order for these two conditions to hold (that is, for At,.m, < At,y,), fo must be identically
Z€ro.

The implication here is two-fold: we have shown that the magic number derived above
and the Zak space condition from [3] share a common analytic underpinning and (more
importantly) we see that the chirp can never be (ideally) sampled to meet the Nyquist
criterion if the carrier frequency fo is > 0. In practice, fo can be made zero by down-
converting the baseband signal prior to discretization, or it may prove that the aliasing
introduced by f; > 0 occurs at frequencies above the frequency of interest.

2.6 Numerical Examples
2.6.1 Simple Response

In the following figures, we show the discrete-time recovery of two simple, closed-form impulse
responses via (20). The impulse responses are a delta function at ¢t = 4At (Figures 1 and 2),
and a Gaussian response h(t) = e~ [(t-0D/0035 (Rigures 3 and 4). In both cases we have
used the magic number with 4y = 10, N = 500,dt¢ = 0.01 and f, = 0, and we see that the real
part of the impulse response matches the given (real) response, while the imaginary part is
numerically zero. Figure 5 shows the result of recovering the impulse response d(t — 4At)
with arbitrary parameters that do not meet the magic number criteria; comparing these
results to Figure 1, we see that the imaginary part becomes appreciable, as do the ripples
around the peak of the delta function. These ripples follow mathematically directly from
the results in (20), where we have an error term of O(2N + 1). ‘

2.6.2 Dielectric Slab Example

A more challenging example is presented by determining the reflection coefficient from a
dielectric slab, which is a realistic physical geometry with extensive time/frequency structure
due to ringing of resonant modes in the slab. Figure 6 shows the frequency domain reflection
coefficient for a plane wave incident on an infinite dielectric slab with thickness 0.508m and
dielectric constant €, = 8.0. The closed-form solution is found from the standard frequency
domain technique of matching boundary conditions at the slab interfaces; the chirp solution
is found from the matched filter response (20). The magic number for At is used, and the
chirp parameters are v = 0.017 GHz/ns, fo = 0, and N = 1024. As the figure shows, the
agreement between the different techniques is excellent, demonstrating that with the magic
number, we can numerically implement ideal reconstruction of the impulse response.
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Figure 1: Impulse response computed from the matched filter response with h(t) = 6(¢ —
4AL), v = 10, fo = 0, At = 0.01, N = 500.

1
0.5
o4
=1 0
[
(74
-0.5
-1
0 2 4 6 8 10

Normalized time

Figure 2: Detail of the real part of the impulse response shown in Figure 1.
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Figure 3: Impulse response computed from the matched filter response with h(t) =
e lE-00/0035 o — 10, fy = 0, At = 0.01, N = 500.
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Figure 4: Detail of the real part of the impulse response shown in Figure 3.
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Figure 5: Impulse response computed from the matched filter response with h(t) = 6(t —
4AL), = 10, fo = 0, At = 0.01, N = 850.

2.7 Practical Considerations: Antenna Effects and Real Chirps
2.7.1 Antenna Effects

In a Synthetic Aperture Radar (SAR) system (for which this approach is proposed for ma-
terials identification), a critical effect is the dispersion caused by the transmitting/receiving
system. At the 29 October, 2003, Technical Interchange Meeting, we presented an analysis of
chirp pulse distortion due to measured dispersion in a two-antenna transmission system. We
noted that the echo waveform is not only a function of the reflectivity, but also of the transfer
characteristics of the antenna system. In the frequency domain, we write this explicitly as

(f) = C(HRAH(S), (28

where ¥U(f) is the Fourier transform of ¥(t), R(f) is the frequency-domain reflectivity
(Fourier transform of R(t)), and H(f) is the antenna system response.

A reflectivity derived from the echo in such a system will be a distorted R'(f) = H(f)R(f)
(or R'(t)) that includes the antenna response; Figure 7 shows the measured frequency re-
sponse H(f) for a pair of horn antennas separated by 1 m. Figure 8 shows the time-domain
distortion of a chirp with fo = 1 GHz and v = 0.01 GHz/ns due to the two-antenna transfer
function, and Figure 9 gives the chirp’s frequency spectrum. In this case of a chirp with a nar-
row spectrum, the distortion caused by the antenna is not significant since H(f) ~ constant
over any given narrow frequency band. The chirp parameter and thus frequency content are
increased for the chirp shown in Figure 10 (frequency in Figure 11), and the distortion of
the chirp is much more pronounced. Here we clearly see that antenna effects must be com-
pensated for (through e.g. prior system calibration) to accurately reconstruct the impulse
response. '
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Figure 6: Computed reflection coefficient for a dielectric slab with thickness £ = 0.508m and
& = 8.0. .The solid line is based on a direct, closed-form frequency domain calculation of
the reflection coefficient. The dashed line results from the matched filter /chirp solution with
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2.7.2 Real Chirps

The integral equation solution given in Section 2.1 requires a complex chirp excitation, and its
reliance on chirp products (namely, the additive property and the matched filter integrand)
precludes decomposing the solution into real and imaginary parts. In practice, producing
complex chirp waveforms for radiation is difficult. Although the complex chirp can be written
as x,(t) + iz;(t), the quadratic time-dependence does not allow for a simple scaling or shift
relation between the quadrature terms. In the above chirp distortion examples, we drove
the antenna system with the real part of the chirp (z(t) = R{z,(t)} = cos(27 fot + 7t?))
to accurately represent a practical implementation. In order to apply the system response
solution with a complex chirp excitation, we must be able to recover the imaginary part of
the chirp from the real part.

Assume that h(t) real and that z(t) = z,(¢)+iz;(t) is a known, prescribed input waveform.
Then

v (t) = h(t) *z.(t) & Y.(f) = H()X(f) :
vi(t) = h(t) xz:(t) & Yi(f) = H()X:(f)- (27)
| (28)

If we are able to only measure y,(t), we can recover y;(t) according to

%) = 2By uie) = 7 {0 w0 (29

Since z(t) is the known excitation, we can in principle pre-compute X (f) (more precisely,
the ratio j%(%) and use it to synthesize y;(t) from y,(t).

The Fourier transform for the chirp is derived as follows. Consider the Fresnel integral
whose solution is generated by the Cornu spiral evaluated at +oo: k

/_Z iP5 ds = \/%(1 +37). (30)

The Fourier transform (using the conventions established in (4)) of the real part of the chirp
is

X(f) = /_ " cos(myt?) cos(2nft) dt

= R [/oo ™ cos(2m ft) dt]
= %éR [ /oo ej"7t262”jftdt] + %% [ /oo ej"“ze_z"jftdt] , (31)

where we have (without loss of generality) set fo = 0 and exploited the resulting evenness
of the chirp function. Completing the square in the exponent terms and using the Fresnel

integral result gives ) . v
X:(f)= \/%—7 (cos (%) +sin (%)) . (32)

15



A similar procedure is used to find X;(f):

g (e )w (D)

Although we have derived the Fourier transform of the complex chirp, the ratio required
to implement (29) is problematic. The existence of f? terms in the denominator (X,(f))
creates an infinite density of unremovable singularities along the real f axis.

3 Measurements

3.1 Time-Domain Chirp Waveform Measurements

We performed a series of chirp waveform measurements using a sweep generator source and
a digital oscilloscope receiver (Figure 12) with the goal of implementing (20) for measured
data on a number of systems. These systems included a direct throughput, a pair of horn
antennas, and a fixed length of transmission line; the chirp waveform in all cases was swept
from an initial frequency of 250 MHz to 1250 MHz (a 5:1 bandwidth) over a time of 10 ms.
These parameters yield a chirp waveform with fo = 0.25 GHz and v = 2 x 10~7 GHz/ns.
The resulting data sets are quite large due to the 2.5 GS/s sampling rate over a 20 ms
measurement duration; displays of the time-domain data are too dense to read. We devel-
oped a technique for looking at the data that determines the center frequency within short
(compared to ) time windows to reveal how the frequency increases with time. Figure 13
shows frequency as a function of time, with a time window of 4096 samples (1.64 us). As
the figure shows, the chirp waveform continuously increases from 250 MHz to 1250 MHz,
demonstrating that the RF generator does indeed produce a continuous chirped waveform.

These measurements were performed before the analysis presented in Section 2.7.2 was
complete, and that result shows that the measurement of real chirp excitation of the system
is insufficient to recover the system response. Furthermore, the measured chirp, while real,
does not easily map to the real or imaginary part of the complex chirp z,(t); that is, the
excitation has the form z(t) = cos(27 fot + Yt + ¢), where ¢ is some (generally unknown)
phase offset. Taken together, these effects indicate that measured waveforms do not easily
adapt to the theoretical analysis presented in Section 2.

Independent of the chirp solution to the integral equation (2), the time-domain measure-
ments also suffer from noise. Material and systems measurements are typically performed in
the frequency domain, where heterodyne mixing affords signal to noise ratios in the < —60 dB
range. The effects of noise on the time domain measurements are clearly shown in Figure 14,
where we have computed the frequency-domain transfer characteristic for a pair of horn an-
tennas from the time-domain chirp measurements. Figure 15 shows the influence of small
time offsets on the ability to accurately recover phase. The straight-line nature of the phase
difference indicates that the shape of the time-domain reconstructed phase is the same as
the shape of the measured frequency-domain phase, but the magnitude of the slope indicates
the differing phase rolls due to different (apparent) time delays.
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Figure 12: Configuration to directly measure chirp waveform generated by the sweep mi-
crowave source. '
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Figure 13: Measured chirp frequency as a function of time. Frequency is determined by
taking a moving window average through the data with a window duration of 1.6us. Total
measurement time was 20 ms.
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Figure 14: Magnitude of the measured transfer characteristic of a pair of horn antennas
spaced 10” apart. The dashed line is a direct frequency measurement of the transfer function
(s21), and the solid line is derived from the ratio of the Fourier transforms of the time-domain
chirp waveform data.
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tion (s21) phases for a pair of horn antennas spaced 10” apart.
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Figure 16: Measured reflection and transmission coefficient magnitudes and phases for 0.5”
thick concrete backer board.

3.2 Materials of Military Interest

Following the discussions at the October TIM, we performed measurements on a subset of
materials of military interest. They include: cement backerboard, drywall, topsoil, sand,
asphalt roof shingles, and plywood. In all cases, the materials were measured on our focused
beam lens system, which creates a field with a uniform (plane-wave-like) phase and Gaussian
amplitude taper (to avoid sample edge effects) at the sample surface that approximates plane
wave illumination. Measurements were performed over the 4 — 18 GHz frequency range and
are calibrated against through and reflection standards.

Representative results from the measurements are demonstrated by the cement backer-
board reflection and transmission coefficients (Figure 16). These measurements are then
used to extract the permittivity of the material assuming u, = 1; the resulting complex
permittivity is shown in Figure 17. The measured properties of the remaining materials are
summarized in Figures 18 through 25; we were not able to reliably extract dielectric constants
for the shingles and topsoil due te high absorption (water content) in the materials.

These measurements further demonstrate the difficulties associated with using the chirp
waveform analysis for materials identification. For instance, the method used to derive the
dielectric constant from the measurements requires knowledge of both the reflection and
transmission coefficients — information that is not provided by the matched filter response
formulation. Furthermore, an interesting property of these materials is that they have rel-
atively constant dielectric properties over the range of microwave frequencies from 4 — 18
GHz, and three of the materials (drywall, sand, and plywood) have very similar values of di-
electric constant. Taken together, these characteristics indicate the need for low noise, wide
bandwidth material measurements that are difficult to achieve with a chirped waveform.
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Figure 17: Complex permittivity for concrete backer board extracted from measured data.
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Figure 18: Measured reflection and transmission coefficient magnitudes and phases for 0.5”
thick drywall.
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Figure 19: Complex permittivity for drywall extracted from measured data.
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Figure 20: Measured reflection and transmission coefficient 'magnitudes and phases for 0.28”
thick plywood.
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Figure 21: Complex permittivity for plywood extracted from measured data.
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Figure 22: Measured reflection and transmission coefficient magnitudes and phases for a 1.0”
thick sample of dry sand.
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Figure 23: Complex permittivity for dry sand extracted from measured data.
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Figure 25: Measured reflection and transmission coefficient magnitudes and phases for a 1.0”
thick sample of top soil. ‘

4 Conclusions

The matched filter/chirp excitation represents a novel solution to the general problem of
directly determining the impulse response of an LTI system wholly in the time domain.
We have shown that, mathematically, the method offers a minimum error solution (via the
matched filter), and that in the discrete case the technique can be used to exactly recover the
impulse response given an appropriate relation between pulse duration, sampling interval,
and chirp rate. We showed that our magic number is related to the Zak space condition given
by the authors in a subsequent report, and that both treatments fail the Nyquist sampling
criteria if the carrier frequency is larger than zero.

While mathematically intriguing, the chirp solution suffers substantially under practical
implementations. By far the largest hurdle is the difficulty associated with synthesizing a
complex chirp waveform, whose additive property is the crux of the closed-form integral
equation solution. We showed through measurements of a host of materials of military
interest that over narrow frequency ranges many of the materials have similar reflection
coefficients that can only be resolved with wideband data. Unfortunately, the chirp pulse
solution is not amenable to wide bandwidth pulses, as the chirp duration times and associate
data collections become prohibitively large. This fact coupled with the high dynamic range
achievable with frequency domain methods (through well-established heterodyne mixing)
indicates that in practice the chirp waveform technique does not offer benefits that exceed
traditional frequency domain material measurements.
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